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1 Introduction
We consider the nonlinear complementarity problem
with P0-function (denoted by P0-NCP) which is to
find a vector (x, y) ∈ Rn ×Rn such that

(x, y) ≥ 0, y = f(x), xT y = 0, (1)

where f : Rn → Rn is a continuously differentiable
P0-function. A function f : Rn → Rn is said to be
a P0-function if, for every u and v in Rn with u 6= v,
there is an index i0 such that

ui0 6= vi0 , (ui0 − vi0)(fi0(u)− fi0(v)) ≥ 0.

Nonlinear complementarity problems (NCPs)
have many important applications in many fields (see,
[4] and references therein). Numerous methods have
been developed to solve NCPs, in which smooth-
ing Newton methods have attracted a lot of attention
partially due to their encouraging convergent prop-
erties and numerical results. Recently, Qi, Sun and
Zhou [10] presented a class of new smoothing Newton
methods for solving NCPs which has global and local
quadratical convergence without strict complementar-
ity. Due to its simplicity and weaker assumptions im-
posed on smoothing functions, the method [10] has
been further studied by many authors for NCPs (see,
e.g., [1, 2, 5, 6, 12, 13, 14, 15]). Lately, Zhang and
Zhang [13] proposed a one-step smoothing Newton
method to solve NCPs and proved that the algorithm is
globally convergent. The method [13] adopts a merit

function which is different with that in [10]. However,
the local quadratic convergence of the method [13] is
not reported.

Motivated by this direction, in this paper, we first
introduce a new smoothing function which has many
nice properties. Based on this function, we propose
a smoothing Newton method for solving the P0-NCP.
Our method adopts a new merit function which is dif-
ferent with those in [10] and [13]. In addition, the
proposed method uses a modified Newton equation to
obtain the search direction which contains the usual
Newton equation as a special case. Without requir-
ing strict complementarity assumption, the proposed
method is shown to be globally and locally quadrati-
cally convergent.

This paper is organized as follows. In the next
section, we introduce a new smoothing function and
study its properties. In Section 3, we reformulate
the P0-NCP concerned as a family of parameterized
smooth equations and give its properties. In Section
4, we present a smoothing Newton method for solv-
ing the P0-NCP. The global and local quadratic con-
vergence of the proposed algorithm are investigated in
Section 5. Numerical results are reported in Section 6.
Some conclusions are given in Section 7.

Throughout this paper, Rn
+ and Rn

++ denotes the
nonnegative and positive orthant in Rn, respectively.
For any vector w ∈ Rn, we denote w by vec{wi} and
the diagonal matrix whose ith diagonal element is wi

by diag{wi}.
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2 A new smoothing function
Smoothing functions play an important role in design-
ing smoothing Newton methods for the NCP. In this
paper, we propose and investigate a new smoothing
functions φ : R3 →R defined by

φ(µ, a, b) = a + b

−
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2, (2)

where

A(µ, a, b) := a cos2µ + b sin2µ,

B(µ, a, b) := a sin2µ + b cos2µ.

It is worth pointing out that the smoothing function
(2) has been discussed by Fang et al. [2] and Tang et
al. [11] for second order cone optimization problems.
Here, we will study its properties on R.

Lemma 1. Let φ be defined by (2). Then φ(µ, a, b) is
continuously differentiable at any (µ, a, b) ∈ R++ ×
R×R. Moreover, for any µ > 0

0 ≤ φ′a(µ, a, b) ≤ 2, 0 ≤ φ′b(µ, a, b) ≤ 2.

Proof: It is easy to see that φ(µ, a, b) is continuously
differentiable at any (µ, a, b) ∈ R++×R×R. From
(2), for any µ > 0, a straightforward calculation yields

φ′µ = − −(a− b)2sin2µcos2µ + 2µ√
A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

, (3)

φ′a = 1− a− 2(a− b)sin2µcos2µ√
A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

, (4)

φ′b = 1− b− 2(b− a)sin2µcos2µ√
A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

. (5)

Since

a− 2(a− b)sin2µcos2µ

= (a cos2µ+b sin2µ)cos2µ+(a sin2µ+b cos2µ)sin2µ

= A(µ, a, b)cos2µ+B(µ, a, b)sin2µ,

b− 2(b− a)sin2µcos2µ

= (a cos2µ+b sin2µ)sin2µ+(a sin2µ+b cos2µ)cos2µ

= A(µ, a, b)sin2µ+B(µ, a, b)cos2µ,

we have, for any µ > 0,

−1 ≤ a− 2(a− b)sin2µcos2µ√
A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

≤ 1,

−1 ≤ b− 2(b− a)sin2µcos2µ√
A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

≤ 1.

Therefore, we obtain the desired result. ut

Lemma 2. Let φ be defined by (2). One has

φ(µ, a, b) = 0 ⇐⇒ A(µ, a, b) ≥ 0, B(µ, a, b) ≥ 0,

A(µ, a, b)B(µ, a, b) = µ2.

Proof: First, we assume that φ(µ, a, b) = 0. Since
A(µ, a, b) + B(µ, a, b) = a + b, it follows from
φ(µ, a, b) = 0 that

A(µ, a, b) + B(µ, a, b)

=
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2. (6)

Upon squaring both side of (6), we get

A(µ, a, b)B(µ, a, b) = µ2.

It follows that

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

= [A(µ, a, b) + B(µ, a, b)]2. (7)

Moreover, by (6) we have

A(µ, a, b) + B(µ, a, b) ≥ 0.

Using this fact, we can conclude from (7) that

A(µ, a, b) =
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

−B(µ, a, b) ≥ 0,

B(µ, a, b) =
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2

−A(µ, a, b) ≥ 0.

Now we assume that

A(µ, a, b) ≥ 0, B(µ, a, b) ≥ 0,

A(µ, a, b)B(µ, a, b) = µ2.

By A(µ, a, b)B(µ, a, b) = µ2, we get

[A(µ, a, b) + B(µ, a, b)]2

= A(µ, a, b)2 + B(µ, a, b)2 + 2A(µ, a, b)B(µ, a, b)

= A(µ, a, b)2 + B(µ, a, b)2 + 2µ2.

This, together with A(µ, a, b) ≥ 0, B(µ, a, b) ≥ 0,
i.e., A(µ, a, b) + B(µ, a, b) ≥ 0, implies that

A(µ, a, b) + B(µ, a, b)

=
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2,

that is,

a + b =
√

A(µ, a, b)2 + B(µ, a, b)2 + 2µ2.

Hence, we have φ(µ, a, b) = 0. ut
From Lemma 2, we can obtain that

φ(0, a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (8)

which together with Lemma 1 shows that φ is a class
of smoothing functions for the NCP.

WSEAS TRANSACTIONS on SYSTEMS Ruijuan Liu, Li Dong, Jingyong Tang

E-ISSN: 2224-2678 229 Volume 17, 2018



Lemma 3. Let φ be defined by (2). Suppose that
{(µk, ak, bk)} ⊂ R++ × R × R is a sequence such
that {µk} is bounded. One has the following results.
(i) If either A(µk, ak, bk) → −∞ or B(µk, ak, bk) →
−∞ as k → ∞, then φ(µk, ak, bk) → −∞ as
k →∞;
(ii) If A(µk, ak, bk) → +∞ and B(µk, ak, bk) →
+∞, then φ(µk, ak, bk) → +∞ as k →∞.

Proof: For simplicity, we define

Uk := A(µk, ak, bk), Vk := B(µk, ak, bk).

Then

φ(µk, ak, bk) = Uk + Vk −
√

U2
k + V 2

k + 2µ2
k. (9)

It is easy to see that φ(µk, ak, bk) → −∞, if either
Uk → −∞ or Vk → −∞ as k → ∞. Now, we
suppose that Uk → +∞ and Vk → +∞ as k → ∞.
In this case, we know that UkVk ≥ µ2

k for sufficiently
large k. So, from (9), we obtain that for sufficiently
large k

φ(µk, ak, bk)

=
2UkVk − 2µ2

k

Uk + Vk +
√

U2
k + V 2

k + 2µ2
k

=
2max{Uk, Vk}min{Uk, Vk} − 2µ2

k

Uk + Vk +
√

U2
k + V 2

k + 2µ2
k

≥ 2max{Uk, Vk}min{Uk, Vk} − 2µ2
k

2max{Uk, Vk}+
√

2(max{Uk, Vk})2 + 2µ2
k

=
2min{Uk, Vk} − 2µ2

k/ max{Uk, Vk}
2 +

√
2 + 2µ2

k/(max{Uk, Vk})2
.

Therefore, it follows from the boundedness of {µk}
that φ(µk, ak, bk) → +∞ as k →∞. This completes
the proof. ut

3 The reformulation of the P0-NCP
Let z := (µ, x, y) ∈ R+ ×Rn ×Rn. We define the
function H : R1+2n →R1+2n by

H(z) :=
(

µ
Γ(z)

)
, (10)

where

Γ(z) :=
(

f(x)− y + µx
Φ(µ, x, y) + µy

)
(11)

with

Φ(µ, x, y) :=




φ(µ, x1, y1)
...

φ(µ, xn, yn)


 , (12)

and φ(·, ·, ·) is defined by (2). Then, it follows from
(8) that

(x, y) is the solution of the P0-NCP ⇐⇒ H(z) = 0.

Lemma 4. Let H(z) be defined by (10). Then the fol-
lowing results hold.
(i) H(z) is continuously differentiable at any z =
(µ, x, y) ∈ R++ ×Rn ×Rn with its Jacobian

H ′(z) =




1 0 0
x f ′(x) + µI −I

Φ′µ + y Φ′x Φ′y + µI


 ,

where

Φ′µ = vec
{
− −(xi − yi)2sin2µcos2µ + 2µ√

A(µ, xi, yi)2 + B(µ, xi, yi)2 + 2µ2

}
,

Φ′x = diag
{

1− xi − 2(xi − yi)sin2µcos2µ√
A(µ, xi, yi)2 + B(µ, xi, yi)2 + 2µ2

}
,

Φ′y = diag
{

1− yi − 2(yi − xi)sin2µcos2µ√
A(µ, xi, yi)2 + B(µ, xi, yi)2 + 2µ2

}
.

(ii) If f is a continuously differentiable P0-function,
then H ′(z) is invertible for any µ > 0.
(iii) H is strongly semismooth on R1+2n if f ′ is Lips-
chitz continuous on Rn.

Proof: By Lemma 1, Φ′x(µ, x, y) and Φ′y(µ, x, y) are
positive diagonal matrices for any (µ, x, y) ∈ R++ ×
Rn × Rn. Using this fact, we can prove the lemma
similarly to Lemma 2.4 in [14]. We omit it here. ut

Notice that we add the terms µx and µy into
H(z). By using such a technique, we can prove that
H(z) is coercive, which is a key to prove the global
convergence of smoothing Newton methods.

Lemma 5. Let H(z) be defined by (10). Suppose that
f is a continuously differentiable P0-function, then
H(z) is coercive, i.e.,

lim
k→∞

‖H(zk)‖ = +∞

for any sequence {zk = (µk, x
k, yk)} such that 0 <

µk < π/2 and lim
k→∞

‖(xk, yk)‖ = +∞.
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Proof: Assume that the result of the lemma does
not hold. Then, there exists a sequence {zk =
(µk, x

k, yk)} such that

0 < µk < π/2, lim
k→∞

‖(xk, yk)‖ = ∞, ‖H(zk)‖ ≤ η,

where η > 0 is certain constant. Since

‖H(zk)‖2 = µ2
k + ‖f(xk)− yk + µkx

k‖2

+‖Φ(µk, x
k, yk) + µky

k‖2, (13)

it follows from the boundedness of {‖H(zk)‖} that
{‖f(xk)−yk+µkx

k‖} and {‖Φ(µk, x
k, yk)+µky

k‖}
are bounded. Denote

Θ(µk, x
k, yk) := yk − f(xk)− µkx

k,

then {‖Θ(µk, x
k, yk)‖} is bounded and

yk = Θ(µk, x
k, yk) + f(xk) + µkx

k. (14)

First, we consider the case where lim
k→∞

‖xk‖ = +∞.

Since f is a continuously differentiable P0-function,
by using Lemma 1 in [3], there exists a subsequence,
which we write without loss of generality as {xk},
and an index i0 such that, either lim

k→∞
xk

i0
= +∞ and

{fi0(x
k)} is bounded below, or lim

k→∞
xk

i0
= −∞ and

{fi0(x
k)} is bounded above.

• If lim
k→∞

xk
i0

= +∞ and {fi0(x
k)} is bounded be-

low, then by the boundedness of {‖Θ(µk, x
k, yk)‖}

and µk > 0, we obtain from (14) that

lim
k→∞

yk
i0 = +∞. (15)

Furthermore, we get

lim
k→∞

{xk
i0cos2µk + yk

i0sin2µk} = +∞,

lim
k→∞

{xk
i0sin2µk + yk

i0cos2µk} = +∞,

that is
lim

k→∞
A(µk, x

k
i0 , y

k
i0) = +∞,

lim
k→∞

B(µk, x
k
i0 , y

k
i0) = +∞.

Then, by Lemma 3 (ii), we have

lim
k→∞

φ(µk, x
k
i0 , y

k
i0) = +∞,

which, together with (15), shows that

lim
k→∞

{φ(µk, x
k
i0 , y

k
i0) + µky

k
i0} = +∞,

i.e., {‖Φ(µk, x
k, yk)+µky

k‖} is unbounded. By (13),
{‖H(zk)‖} is unbounded, which derives a contradic-
tion.
• If lim

k→∞
xk

i0
= −∞ and {fi0(x

k)} is bounded above,

then by the boundedness of {‖Θ(µk, x
k, yk)‖} and

µk > 0, we get from (14) that

lim
k→∞

yk
i0 = −∞. (16)

Furthermore, we have

lim
k→∞

{xk
i0cos2µk + yk

i0sin2µk} = −∞,

lim
k→∞

{xk
i0sin2µk + yk

i0cos2µk} = −∞,

that is
lim

k→∞
A(µk, x

k
i0 , y

k
i0) = −∞,

lim
k→∞

B(µk, x
k
i0 , y

k
i0) = −∞.

By Lemma 3 (i), we can also obtain that

lim
k→∞

φ(µk, x
k
i0 , y

k
i0) = −∞,

and thus

lim
k→∞

{φ(µk, x
k
i0 , y

k
i0) + µky

k
i0} = −∞,

which implies that {‖Φ(µk, x
k, yk) + µky

k‖} is un-
bounded. A contradiction is derived.

Second, we consider the case where {‖xk‖} is
bounded for all k ≥ 0. Since {‖(xk, yk)‖} is un-
bounded, we obtain that {‖yk‖} is unbounded by the
boundedness of {‖xk‖}. Hence, there exists a subse-
quence, which we write as {yk}, and an index i0 such
that lim

k→∞
|yk

i0
| = +∞. Notice that sin2µk > 0 and

cos2µk > 0 since 0 < µk < π/2. Therefore, when
lim

k→∞
yk

i0
= +∞, we have

lim
k→∞

{xk
i0cos2µk + yk

i0sin2µk} = +∞,

lim
k→∞

{xk
i0sin2µk + yk

i0cos2µk} = +∞,

and when lim
k→∞

yk
i0

= −∞, we have

lim
k→∞

{xk
i0cos2µk + yk

i0sin2µk} = −∞,

lim
k→∞

{xk
i0sin2µk + yk

i0cos2µk} = −∞.

Similarly to the first case, we can obtain the desired
contradiction. So, we complete the proof. ut
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4 A smoothing Newton method
By using the function ‖H(z)‖ defined by (10), the ex-
isting smoothing Newton methods (e.g., [1, 2, 5, 6, 10,
14, 15]) usually defined the merit function as

G1(z) := ‖H(z)‖2 or G2(z) := ‖H(z)‖.

Zhang and Zhang [13] presented a different merit
function as

G3(z) := µ + ‖Γ(z)‖2.

Based on this merit function, Zhang and Zhang [13]
proposed a smoothing Newton method for solving the
NCP and proved that the method is globally conver-
gent. However, the local quadratic convergence of the
method [13] is not established.

In this paper, for any z := (µ, x, y) ∈ R+×R2n,
we denote the merit function G(z) : R+×R2n →R+

by
G(z) = µ + ‖Γ(z)‖. (17)

Notice that H(z) = 0 if and only if G(z) = 0. By us-
ing this merit function, we propose a smoothing New-
ton method for the P0-NCP and prove that our method
is globally and locally quadratically convergent.

Algorithm 6. (A smoothing Newton method)

Step 0. Choose constants δ, σ ∈ (0, 1) and 0 < µ0 < π
2 .

Choose constants γ ∈ (0, 1) and τ ∈ [0, 1) such
that γ < µ0 and γ + τ < 1. Choose (x0, y0) ∈
R2n be an arbitrary initial point and let z0 :=
(µ0, x

0, y0). Set k := 0.

Step 1. If ‖H(zk)‖ = 0, then stop.

Step 2. Compute ∆zk := (∆µk,∆xk,∆yk) ∈ R1+2n

by
H(zk) + H ′(zk)∆zk = Υk, (18)

where

Υk :=
(

βk

Λk

)
(19)

with
βk := γ min{1, G(zk)2}, (20)

Λk :=
τ‖H(zk)‖
1 + G(zk)2

Γ(zk). (21)

Step 3. Let lk be the smallest nonnegative integer l such
that

G(zk + δl∆zk) ≤ [1− σ(1− t)δl]G(zk), (22)

in which t := γ + τ . Let αk := δlk .

Step 4. Set zk+1 := zk + αk∆zk and k := k + 1. Go to
Step 1.

Remark 7. Similar algorithmic framework was first
introduced in [10], and was extensively discussed by
many authors for solving the NCP (see, e.g., [1, 5, 6,
12, 13, 14, 15]). Notice that Algorithm 6 uses a mod-
ified Newton equation (18) to obtain the direction. If
we choose τ = 0, then (18) becomes the usual Newton
equation

H(zk) + H ′(zk)∆zk =
(

βk

0

)

which has been extensively used in smoothing Newton
methods (see, e.g., [1, 5, 6, 10, 12, 13, 14, 15]).

Lemma 8. Let Λk be defined by (21). If µk ≥ 0, then

‖Λk‖ ≤ τ min{1, G(zk)2}. (23)

Proof: Since

‖H(zk)‖2 = µ2
k + ‖Γ(zk)‖2

≤ (µk + ‖Γ(zk)‖)2
= G(zk)2,

we have ‖H(zk)‖ ≤ G(zk). Notice that ‖Γ(zk)‖ ≤
G(zk) by (17). So, we have

‖Λk‖ =
τ‖H(zk)‖
1 + G(zk)2

‖Γ(zk)‖ ≤ τG(zk)2

1 + G(zk)2
,

which implies that ‖Λk‖ ≤ τ and ‖Λk‖ ≤ τG(zk)2
for all k ≥ 0. This proves the lemma. ut
Lemma 9. Let βk,Λk be defined by (20) and (21),
respectively. Then, for all k ≥ 0, one has

βk + ‖Λk‖ ≤ (γ + τ)G(zk). (24)

Proof: Since min{1, ξ2} ≤ ξ for any ξ ≥ 0, it follows
from (20) and (23) that

βk = γ min{1, G(zk)2} ≤ γG(zk),

‖Λk‖ ≤ τ min{1, G(zk)2} ≤ τG(zk).

Using these facts, we can obtain the result. ut
Theorem 10. Suppose that f is a continuously dif-
ferentiable P0-function and that z0 = (µ0, x

0, y0) ∈
R++×Rn×Rn. Then Algorithm 6 is well-defined and
generates an infinite sequence {zk := (µk, x

k, yk)}
with µk > 0 for all k ≥ 0.
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Proof: Since µ0 > 0 by the choice of initial point, we
may assume without loss of generality that µk > 0 for
some k. Since f(x) is a continuously differentiable
P0-function, Lemma 4 implies that the matrix H ′(z̃k)
exists and it is invertible. Hence, Step 2 of Algorithm
6 is well-defined at the kth iteration. By (18) we have
∆µk = −µk +βk. Since µk > 0, we have G(zk) > 0
and hence βk > 0. Then, for any α ∈ (0, 1] we have

µk + α∆µk = (1− α)µk + αβk > 0. (25)

For any α ∈ (0, 1], we denote

Fk(α) := Γ(zk + α∆zk)− Γ(zk)− αΓ′(zk)∆zk,

then Fk(α) = o(α) since Γ is continuously differen-
tiable for any zk ∈ R++×R2n. Hence, we can obtain
that for any α ∈ (0, 1]

‖Γ(zk + α∆zk)‖

= ‖Γ(zk) + αΓ′(zk)∆zk + Fk(α)‖
= ‖(1− α)Γ(zk) + αΛk + o(α)‖
≤ (1− α)‖Γ(zk)‖+ α‖Λk‖+ o(α), (26)

where the second equality follows from the fact
Γ′(zk)∆zk = −Γ(zk) + Λk by (18). Hence, from
(17), also using (24)–(26) we have

G(zk +α∆zk)

= µk +α∆µk +‖Γ(zk +α∆zk)‖
= (1−α)µk+αβk+(1−α)‖Γ(zk)‖+α‖Λk‖+o(α)

= (1−α)G(zk)+α(βk+‖Λk‖)+o(α)

≤ (1−α)G(zk)+α(γ+τ)G(zk)+o(α)

≤ [1− (1− t)α]G(zk) + o(α).

Since t = γ+τ < 1, there exists a constant ᾱ ∈ (0, 1)
such that

G(zk + α∆zk) ≤ [1− σ(1− t)α]G(zk)

holds for any α ∈ (0, ᾱ] and σ ∈ (0, 1). This demon-
strates that Step 3 of Algorithm 6 is well-defined at
the kth iteration. So, zk+1 can be generated by Algo-
rithm 6. Moreover, by Step 3 of Algorithm 6, we have
αk ∈ (0, 1]. This, together with (25), shows that

µk+1 = µk + αk∆µk ≥ (1− αk)µk + αkβk > 0.

Hence, from µ0 > 0 and the above statements, we
prove that Algorithm 6 is well-defined and generates
an infinite sequence {zk} with µk > 0. This com-
pletes the proof. ut

5 Convergence analysis
In this section, we analyze the convergence properties
of Algorithm 6. To show its global convergence, we
need the following result.

Lemma 11. The sequence {zk = (µk, x
k, yk)} gen-

erated by Algorithm 6 has the following properties.
(i) {βk} is monotonically decreasing;
(ii) µk ≥ βk for all k ≥ 0;
(iii) {µk} is monotonically decreasing.

Proof: From Steps 3 and 4 of Algorithm 6, we know
that {G(zk)} is monotonically decreasing. Thus, by
the definition of βk in (20), we have βk ≥ βk+1 for
all k ≥ 0. Notice that µ0 ≥ γ ≥ β0 by Step 0 of
Algorithm 6. Suppose that µk ≥ βk for some k, then
by (25) we have

µk+1 = (1−αk)µk+αkβk ≥ (1−αk)βk+αkβk = βk,

which, together with (i), implies that µk+1 ≥ βk+1.
So, by mathematical induction, we have µk ≥ βk for
all k ≥ 0. Using this result we can further obtain that

µk+1 = (1−αk)µk+αkβk ≤ (1−αk)µk+αkµk = µk.

This completes our proof. ut
Theorem 12. Suppose that f is a continuously dif-
ferentiable P0-function and that {zk} is the iteration
sequence generated by Algorithm 6. Then
(i) {G(zk)} converges to zero as k → ∞, and hence
any accumulation point z∗ of {zk} is a solution of the
P0-NCP.
(ii) If the solution set of the P0-NCP is nonempty and
bounded, then {zk} is bounded and hence it has at
least one accumulation point.

Proof: According to Steps 3 and 4 of Algorithm 6,
we know that {G(zk)} is monotonically decreasing
and bounded from below by zero. Thus, there exists
G∗ ≥ 0 and β∗ ≥ 0 such that

lim
k→∞

G(zk) = G∗, lim
k→∞

βk = β∗ := γ min{1, (G∗)2}.

If G∗ = 0, then we obtain the desired result. Suppose
that G∗ > 0, then we have β∗ > 0. By Lemma 11, we
obtain that

0 < β∗ ≤ βk ≤ µk ≤ µ0 <
π

2
.

Also notice that

0 ≤ ‖H(zk)‖ ≤ G(zk) ≤ G(z0).

Therefore, from Lemma 5 we know that {zk =
(µk, x

k, yk)} is bounded and hence it has at least one
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accumulation point z∗ := (µ∗, x∗, y∗). Without loss
of generality, we assume that {zk} converges to z∗ as
k → +∞. Since µk ≥ βk, we have µ∗ ≥ β∗ > 0.
Then, from Lemma 4 we obtain that H ′(z∗) exists
and is invertible. Hence, there exists a closed neigh-
borhood N(z∗) of z∗ such that for any z ∈ N(z∗)
we have µ ∈ R++ and H ′(z) is invertible. Then,
for all sufficiently large k, we have zk ∈ N(z∗) and
hence µk ∈ R++ and H ′(zk) is invertible. For all
sufficiently large k, let ∆zk ∈ R1+2n be the unique
solution of the system of equations

H ′(zk)∆zk = −H(zk) + Υk.

Similarly to the proof of Theorem 10, for all suffi-
ciently large k, there exists a nonnegative integer l̄

such that δ l̄ ∈ (0, 1] and

G(zk + δ l̄∆zk) ≤ [1− σ(1− t)δ l̄]G(zk).

For all sufficiently large k, since αk = δlk ≥ δ l̄, it
follows from Steps 3 and 4 in Algorithm 6 that

G(zk+1) ≤ [1− σ(1− t)δlk ]G(zk)

≤ [1− σ(1− t)δ l̄]G(zk).

Taking limits on both sides of the above inequality, we
have

G∗ ≤ [1− σ(1− t)δ l̄]G∗,

which, together with G∗ > 0, implies that σ(1 −
t)δ l̄ ≤ 0, i.e., t = γ + τ ≥ 1. This contradicts
the fact that γ + τ ≤ 1 in Step 0 of Algorithm 6.
Hence, we have G∗ = 0, that is, lim

k→∞
G(zk) = 0.

This proves the first part of (i). Next, we prove the
second part. Assume that z∗ is an accumulation point
of {zk}. Without loss of generality, we assume that
limk→∞ zk = z∗. Then, it follows from the continu-
ity of G that lim

k→∞
G(zk) = G(z∗) = 0. Thus, z∗ is a

solution of the P0-NCP.
Now, we prove (ii). Since {µk} is monotonically

decreasing by Lemma 11, we have

0 ≤ µk ≤ µ0 < π/2

holds for all k ≥ 0. We only need to prove that
{(xk, yk)} is bounded. By the result (i), it is easy to
see that lim

k→∞
‖H(zk)‖ = 0, which gives

lim
k→∞

µk = 0, lim
k→∞

‖Γ(µk, x
k, yk)‖ = 0.

From this fact, also using the famous mountain pass
theorem (see, Theorem 9.2.7 in [7]), we can prove that
{(xk, yk)} is bounded similarly as Theorem 3.1 in [5].

Therefore, {zk} is bounded and hence it has at least
one accumulation point. ut

Now, we discuss the convergence rate of Algo-
rithm 6. For this purpose, we need the following re-
sult.

Lemma 13. Let Υk be defined by (19). Then, for all
sufficiently large k,

‖Υk‖ = O(‖H(zk)‖2).

Proof: From the result (i) in Theorem 12, we have
lim

k→∞
G(zk) = 0. So, according to (20) and (23), we

have for all sufficiently large k,

βk = γG(zk)2, ‖Λk‖ ≤ τG(zk)2. (27)

Moreover, by the definition of H , we can obtain that
µk ≤ ‖H(zk)‖ and ‖Γ(zk)‖ ≤ ‖H(zk)‖. Hence, we
get

G(zk)2 = (µk + ‖Γ(zk)‖)2
= µ2

k + 2µk‖Γ(zk)‖+ ‖Γ(zk)‖2

≤ 4‖H(zk)‖2.

It follows from (19) and (27) that for all sufficiently
large k,

‖Υk‖ ≤ βk+‖Λk‖ ≤ (γ+τ)G(zk)2 = O(‖H(zk)‖2).

This proves the lemma. ut
Theorem 14. Suppose that f is a continuously differ-
entiable P0-function and that z∗ is an accumulation
point of the iteration sequence {zk} generated by Al-
gorithm 6. If all V ∈ ∂H(z∗) are nonsingular and f ′
is locally Lipschitz continuous around x∗, then {zk}
converges to z∗ quadratically with ‖zk+1 − z∗‖ =
O(‖zk − z∗‖2).

Proof: First, from Theorem 12, we have H(z∗) = 0.
Since all V ∈ ∂H(z∗) are nonsingular, it follows from
Proposition 3.1 in [9] that

‖H ′(zk)−1‖ = O(1) (28)

holds for all zk sufficiently close to z∗. Second, under
the assumption that f ′(x) is locally Lipschitz contin-
uous around x∗, it follows from Lemma 4 that H is
strongly semismooth at z∗. Hence, for all zk suffi-
ciently close to z∗,

‖H(zk)−H(z∗)−H ′(zk)(zk − z∗)‖

= O(‖zk − z∗‖2). (29)
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Third, since H is strongly semismooth at z∗, H is lo-
cally Lipschitz continuous near z∗, So,

‖H(zk)‖ = ||H(zk)−H(z∗)‖ = O(‖zk−z∗‖) (30)

holds for all zk sufficiently close to z∗. This, together
with Lemma 13, gives that for all zk sufficiently close
to z∗

‖Υk‖ = O(‖zk − z∗‖2). (31)

Therefore, using (28), (29) and (31), we get from (18)
that for all zk sufficiently close to z∗,

‖zk + ∆zk − z∗‖

= ‖zk + H ′(zk)−1[−H(zk) + Υk]− z∗‖

≤ ‖H ′(zk)−1‖
[
‖H(zk)−H(z∗)

−H ′(zk)(zk − z∗)‖+ ‖Υk‖
]

= O(‖zk − z∗‖2). (32)

By a similar way as the proof of Theorem 3.1 in [8],
we have

‖zk − z∗‖ = O(‖H(zk)‖) (33)

for all zk sufficiently close to z∗. Hence, it follows
from (30), (32) and (33) that for all zk sufficiently
close to z∗,

‖H(zk + ∆zk)‖ = O(‖zk + ∆zk − z∗‖)

= O(‖zk − z∗‖2)

= O(‖H(zk)‖2). (34)

Notice that
√

a2 + b2 ≤ a + b ≤
√

2(a2 + b2) holds
for any a, b > 0. Using this result, we can obtain from
(10) and (17) that

‖H(zk)‖ ≤ G(zk) ≤
√

2‖H(zk)‖. (35)

So, it follows from (34) and (35) that

G(zk + ∆zk) = O(G(zk)2). (36)

From Theorem 12, we know that G(zk) → 0 as k →
∞. Thus, (22) and (36) imply that αk = 1 for all
zk sufficiently close to z∗. This, together with (32) ,
indicates that for all zk sufficiently close to z∗,

‖zk+1 − z∗‖ = O(‖zk − z∗‖2).

This completes the proof. ut

6 Numerical results
In this section, we implement Algorithm 6 for solving
some NCPs. All experiments are done using a PC with
CPU of 2.5 GHz and RAM of 512 MB, and all codes
are written in MATLAB.

We test some NCPs with f(x) = P (x)+Mx+q,
where P (x) and Mx + q are the nonlinear and linear
parts of f(x), respectively. We form the matrix M as
M = AT A + B, where

A = 40rand(n,n)− 20ones(n,n),

B = 40rand(n,n)− 20ones(n,n),
and the vector q as

q = 10rand(n,1)− 5ones(n,1).

The components of P (x), the nonlinear part of f(x),
are Pj(x) = pj · arctan(xj), where pj is a random
variable in (0, 4). For the initial point, we choose

x0 = rand(n,1) and y0 = ones(n,1).

Throughout the experiments, the parameters used in
Algorithm 6 are µ0 = 10−3, γ = 5 × 10−4, τ =
10−3, σ = 0.2, δ = 0.8. We use ‖H(zk)‖ ≤ 10−6

as the stopping criterion.
In the experiments, we generate 3 problem in-

stances for each size of n. The test results are listed
in Table 1, in which IT denotes the iteration numbers;
CPU denotes the CPU time in seconds; HK denotes
the value of ‖H(zk)‖ when the algorithm terminates.

Table 1 Test results of Algorithm 6
n IT CPU HK
50 19 0.09 2.9638× 10−8

33 0.08 2.4386× 10−7

29 0.06 7.9090× 10−8

100 46 0.54 4.6097× 10−9

39 0.42 1.6051× 10−10

39 0.41 3.1825× 10−10

150 66 2.13 6.3729× 10−11

44 1,38 1.6024× 10−9

41 1.27 4.6621× 10−7

200 69 4.89 6.8591× 10−7

62 4.33 1.0608× 10−9

40 2.78 6.1262× 10−8

250 82 11.02 7.2019× 10−7

69 9.27 1.3076× 10−9

89 11.91 5.2743× 10−9

300 101 23.61 1.8499× 10−9

74 17.27 2.8132× 10−7

65 15.13 7.6130× 10−7

400 117 61.94 1.4907× 10−7

84 44.42 9.6036× 10−8

95 50.24 7.7582× 10−7
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7 Conclusions
Based on a new smoothing function, we propose a
modified smoothing Newton algorithm for solving the
P0-NCP. The proposed algorithm can start from an ar-
bitrary point and it solves only one linear system of
equations and performs only one line search per iter-
ation. In addition, it adopts a new merit function. We
show that the proposed algorithm is globally and lo-
cally quadratically convergent under suitable assump-
tions. Numerical results demonstrate that our algo-
rithm is promising.
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